The Mw8.8 27-Feb-2010 Maule Earthquake: Researching pre-, co- and post-seismic deformation

Andrés Tassara

Departamento de Ciencias de la Tierra Universidad de Concepción

UDEC

K. Bataille, JC Baez, H. Soto, D. Morales, P. Rodriguez, N. Pulgar, M. Contreras

M. Moreno, D. Melnick

GFZ-Potsdam

Seismic Cycle at Subduction Zones

INTER-TO PRE-SEISMIC PHASE OF THE MAULE EARTHQUAKE

Rupture Length of Great Historical Earthquakes (M>7.5)

Pichilemu-Concepción Seismic Gap (175 Years)

Seismogeneic Segmentation of Chilean Margin

2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone

THREE APPROACHES FOR ANALAZING COASTAL DEFORMATION AT SCALES OF DECADES

VERTICAL MOVEMENT OF COASTAL PLATFORMS

ANALYSIS OF TIDE-GAUGE TIME SERIES

SPATIO-TEMPORAL EVOLUTION OF SEISMICITY

VERTICAL MOVEMENT OF COASTAL PLATFORMS

Punta Lavapie

VERTICAL MOVEMENT OF COASTAL PLATFORMS

Punta Lavapié II, S-Ansicht; DGM-Raster=5 cm

- 1941 - 1961 - 1979 1992 - 1998

VERTICAL MOVEMENT OF COASTAL PLATFORMS

Preliminary results showing rapid subsidence since mid 90`s (10 times larger than global sea-level rise)

ANALYSIS OF TIDE-GAUGE TIME SERIES

Mareograms record sea-level variations due to a combination of ocean-atmospheric phenomena and land-level vertical movement of tectonic origin

SPATIO-TEMPORAL EVOLUTION OF SEISMICITY

Hugo Soto and Daniel Morales work Gutenberg-Richter Law

• *Frecuencia-magnitug* relationship for a set of earthquakes in a given time and volume

N: Number of earthquakes with magnitude > M

M: Magnitude

a: Rate of Seismicity

b: Slope of linear relationship

Mc: Magnitude of completness

b-value and degree of Coupling

• Schorlemmer et al (NATURE 2005)

Shear

Normal Low Stress

Reverse High Stress

SPATIO-TEMPORAL EVOLUTION OF SEISMICITY

COSEISMIC PHASE OF THE MAULE EARTHQUAKE

Sciencexpress

Brevia

Land-Level Changes Produced by the $M_{\rm w}$ 8.8 2010 Chilean Earthquake

Marcelo Farías, 1* Gabriel Vargas, 1 Andrés Tassara, 2 Sébastien Carretier, 3 Stéphane Baize, 4 Daniel Melnick, 5 Klaus Bataille²

¹Departamento de Geologia, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile. ²Departamento de Ciencias de la Tierra, Universidad de Concepción, Casilla 160-C, Concepción, Chile. ³IRD, LMTG, UPS (OMP), Université de Toulouse, 14, Av. Belin, Toulouse 31400, France. ⁴Institut de Radioprotection et de Sûrete Nucléaire (IRSN), BP 17, 92262 Fontenay-aux-Roses, France. ⁵Institut für Erd- und Umweltwissenschaften, Univesität Potsdam, Haus 27, Zi. 2.26, Karl-Liebknecht-Str. 24, 14476 Golm, Germany.

Litoral organisms dead and dried at 1.5-2 m above sea-level!!!!

Preferred Elastic Dislocation Model

Re-measuring GPS campaign points for co-seismic deformation

COSEISMIC HORIZONTAL DISPLACEMENT FROM CONTINUOUS AND CAMPAIGN GPS STATIONS

+ InSAR + Land-level changes from biomarkers

3D FEM with realistic geometries (Tassara and Echaurren, accepted GJI)

POST-SEISMIC PHASE OF THE MAULE EARTHQUAKE

POSTSISMIC DEFORMATION

Continuous GPS stations being served and processed at UDEC (Juan Carlos Baez)

Interseismic locking, co- and post-seismic slip with the same 3D FEM (Moreno et al., in prep)

Interseismic locking, co- and post-seismic slip with the same 3D FEM (Moreno et al., in prep)

b-value 1 year after 27F

CONCLUSIONS

 Preliminary results of relative sea-level change due to tectonic loading of the megathrust fault (from analysis of coast-line advance on coastal terraces and tide-gauge time) suggest acceleration of crustal deformation 10-5 years before the 2010 Maule earthquake.

• This is consistent with an accelerated decrease of b-value (increase in seismic coupling) 5 years before the earthquake.

- These possible pre-seismic signal of crustal deformation must be confirmed with other methods: integrated analysis of TIGO time-series and satellite geodesy and gravity.
- Geodetic data (GPS-GNSS, InSAR, GRACE) complemented with seismicity data allow a clear characterization of crustal deformation due to the seismic cycle of the megathrust.
 Rich characterization of CO- and POST-SEISMIC processes improved by 3D Finite Element Modeling.

 Still lot of work to do and lot of knowledge to acquire from the Maule earthquake

MUCHAS GRACIAS!!!!

VIELEN DANK!!!!