

Geociencias y Energia Concepción, January 18-21, 2012

Alpine hazard management and utilization of geothermal energy in Bavaria, Germany

Prof. Dr. John Singer Prof. Dr. K. Thuro, Prof. Dr. Th. Wunderlich, Prof. Dr. O. Heunecke, Prof. Dr. Kai Zosseder

Technische Universität München Section Landslide Monitoring, Analysis and Early Warning

- Landslide hazard management
 - Hazard indication maps

Content

- Monitoring and early warning: the alpEWAS project
- Radar remote sensing
- Utilization of geothermal energy
 - The geothermal potential Southern Germany
 - Deep geothermal energy
 - Near surface geothermal energy

- Issued by the Bavarian State Office for the Environment for the high mountain areas
- Hazards covered:
 - Rockfall
 - Shallow and deep seated landslides (excluding debris flows)
 - Dolines and sinkholes
- Gives information on the hazard situation based on
 - Empirical observations (landslide inventory)
 - Detailed geological and topographic information
 - Numerical models

Determination of potential detatchment areas

Based on:

- DEM
- Aerial photos
- Inventory
- Field observations

Based on:

- DEM
- Aerial photos (land cover)

- Overview of landslide *hazard distribution*
- Identification of *conflicts* with current and future land use
- In case of high damage potential:

site specific analysis and mitigation measures

- Increase of landslide risk in alpine areas
- Need for economic measuring systems Deformation above AND below the surface (landslide velume)
 - Triggering factors (e.g. groundwater level) xpan
 - ettle e.g. early warning Continuous measurements systems (alarming a to possigly early warn ng)
- → alpEWAS Geosensor Network
 - Video Tacheometry (VDamage
 - Low Cost Global Navigation Satellite System (LC-GNSS)
 - Time Domain Reflectometry (TDR)

alpEWAS Geosensor Network

- Precision tacheometer + high resolution digital camera
 - Arbitrary natural targets (no need for artificial targets)
 - Target detection based on image analyses (intensity, edges)
 - Intelligent target selection
 - → Flexible contact-free measuring system
 - → Limited range, depends on visibility of targets

- Low cost GNSS sensors
 - Use of L1 carrier phase only
 - Post processing of data segments (filtering, smoothing)
 - Near real time base line processing
 - Sub-centimeter accuracy
 - → weather independent, continuous
 - → punctual information

Time Domain Reflectometry (TDR)

alpEWAS Control Data Management

User

Geosensornetwork

piezometers

alpEWAS Control Data Management

Meteorology

Power Management

13

Aggenalm Landslide

 Reliable prediction of slope deformation 3 days in advance based on observation of triggering factors

- Empirical observations
 - Threshold values for onset of slow deformations
- Numerical model (FLAC)
 - Validation using monitoring data
 - Simulation of extreme events
 - → Threshold values for catastrophic event

Definition of threshold values

- LC-GNSS surface deformations punctual
- VTPS surface deformations extensive
- vpe of movement TDR – subsurface shear deformation – punctual

Online

- \rightarrow 3D deformation
- Piezometer ground water level

Synopsis

- Weather station precipitation
- → Influence on deformation
- → Model development
- Definition of threshold values
- Continuous acquisition
- Remote data access
- \rightarrow Early warning system

- Artificial Persistent Scatterers
- Increase of PS point density
- Only for comparably small areas of interest

- 19 reflectors
- 3 refl. types
- heating
- Crosscheck
 between
 GNSS, TPS,
 CR-InSAR
- Consolidation of monitoring network
- Data integration

www.alpewas.de

Utilization of geothermal energy in Bavaria

Department Hydrogeology and Geothermal Energy

Department Hydrogeology and Geothermal Energy

Geothermal Potential of South Germany

Areas with favourable geological conditions for Geothermal Energy

Areas with favourable geological conditions for Geothermal Heat production

Areas with accetable geological conditions for Geothermal Heat production

Department Hydrogeology and Geothermal Energy

Geothermal Potential of South Germany

Areas with favourable geological conditions for Geothermal **Heat production**

Areas with acceptable geological conditions for Geothermal **Heat production**

Department Hydrogeology and Geothermal Energy

Geothermal Potential of South Germany

Areas with favourable geological conditions for Geothermal **electricity generation**

Areas with accetable geological conditions for Geothermal **electricity generation**

limited by

- production rate
- thermal gradient

Department Hydrogeology and **Geothermal Energy**

Geological Cross Section

Malm Aquifer is the most important aquifer for deep thermal energy \rightarrow relevant temperatures and relevant flowrates

Deep thermal energy Hydraulic Conductivity of the Malm Aquifer

Hydrogeology and Geothermal Energy

Bearbeitung: Birner / Schneider (Freie Universität Berlin) Jodocy / Stober (Regierungspräsidium Freiburg) Zeichnung: Birner Stand: 03/2009

25 50 100 Kilometer

T/H bezogen auf Reservoirtemperatur Einteilung in Anlehnung an DIN 18130

E 10-11 bis 10-6

< 10-8

GW-Geringleite

Deep thermal energy Hydraulic Conductivity of the Malm Aquifer

Hydrogeology and Geothermal Energy

Example fractures and karst structures

LIAG 2008

Deep thermal energy Facies Analysis -

Hydrogeology and Geothermal Energy

Research Topics:

- flow rates prediction
- temperature prediction
- reservoir modelling

→ mainly Southern Germany

cooperation: local engeneering offices and regional government

\rightarrow Oversea studies (USA)

cooperation:

Department
geology andNear surface geothermal energyDepartment
geology andGroundwater in Munich

Munich Quartenary Aquifer:

- high hydraulic conductivity
- high aquifer thickness

 \rightarrow good conditions using goundwater for heating and cooling

 temporarly and locally very high groundwater temperatures

 \rightarrow anthropgenic effect

There is a Need for a

Geothermal Groundwater Managment Tool

to avoid resource conflicts in the future

Department
geology andNear surface geothermal energyDepartment
geology andGroundwater Management Tool

Hydrogeology and Geothermal Energy

e.g.:

Estimation of

the geothermal parameters

thermal conductivity distribution

(Measurements with the Thermal Conductivity Scanner)

Parametrisation

Influences of the temperature variability

- \rightarrow e.g. Quantify rejected heat from:
- subway
- district heating network
- buildings
- •

Estimation of hydraulic parameters

Groundwater heat transport model

Optimisation of the existing geothermal installations

Interface groundwater heat model with thermal energy system simulation programs

Geothermal potential with respect to climate change

Simulation and Prognosis Geothermal potential with respect to urban development

Simulation of the frost action boundary at a borehole heat exchanger

Inlet and Outlet temperature

Goal: Optimization of installation parameters

Department
Hydrogeology andNear surface geothermal energySimulation of a borehole heat exchanger

Geothermal Energy

Sensitivity analysis of the conditions to optimise the borehole heat exchangers

Near surface geothermal energy

Department Hydrogeology and Geothermal Energy

Geothermal Energy Utilization of geothermal energy in Bavaria

Geothermal Energy

Thank you for your attention

I wish you a CO₂-limited future with geothermal energy