

Natural attenuation processes of metals and sulphate in elder mining dumps/ tailings

<u>Nils Hoth</u>

(TU BA Freiberg – Dept. of Mining, Teaching Field "Mine waters")

N. Hoth, A. Storch, A. Simon

D. Rammimair, T. Graupner, M. Furche

A. Kassahun

ιŹ

A. Kassanun

R. Schwartz, J. Gerth

K. Knöller

Funded by

Bundesministerium für Bildung und Forschung

Problem description

Mining activity ⇒ geochemical change ⇒ weathering of sulphides
AMD/ ARD- Phenomena ⇒ acidity (iron), trace metals, sulphate ore mining ⇒ radionuclides, alkaline leaching
Prognosis ⇒ influence of dump waters to ground -/ surface waters
EUWRRL ⇒ Time-behaviour of source term, mass flow, trend reversal?
Process understanding ⇒ network of hydrobiogeochemical reactions

Network of hydrobiogeochemical reactions

Weathering circle

- Carbonate buffer \Rightarrow DIC, Ca²⁺, Mg²⁺, Fe²⁺Cation exchange \Rightarrow Na⁺, K⁺, Ca²⁺, Mg²⁺
- Al- u. Fe- hydroxide buffer \Rightarrow Al³⁺, Fe³⁺, trace metals
- Alumosilicate-buffer \Rightarrow Al³⁺, H₂SiO₃, main Elements, trace metals

Geogenic buffer potentials \Rightarrow storage pool of secondary minerals

Characteristics of the "mining bodies"

- \Rightarrow Very large source terms (comp. to organic pollutants)
 - No classical remediation as for org. pollutants possible
 - only on Hot Spots remediation activities
- ⇒ Process understanding of hydrogeochemical "reorganisation"
 - Balance of weathering
 - Understanding of natural immobilisation (NA processes)
- \Rightarrow Important ideas for reprocessing tailings
 - Structural understanding of metal-rich layers
 - understanding of weathering zones

Large network of research-projects "Controlled natural attenuation processes" in Germany (called KORA) – funded by BMBF

- \Rightarrow Leader of network No. 6
- \Rightarrow the Part "Mining bodies and Flood plain sediments"

BMBF-Förderschwerpunkt "Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen in der Boden- und Grundwasserzone"

KORA

Themenverbund 6 "Bergbau und Sedimente"

Network 6 - Mining bodies and flood plain sediments

6.1 – Flood plain sediments

- Anorganic (As, Cd) and organic pollutants pesticides (DDX, HCH)
- <u>TU Hamb.-Harb. (IUE)</u>, Fa. Dr.Fintelmann & Dr. Meyer

6.2 – Lignite opencast overburden dumps

- Immobilisation of acidity (sulphate, Fe, trace metals) by microbial sulphate reduction/ sulphide phase formation
- TUBAF, UFZ, GFI, G.E.O.S., INC

6.3 – Ore mining heaps/ Tailings

- Trace metal immobilisation by crust formation at the capillary fringe (acidic & alkaline mining heaps)
- BGR Hannover, GFI Dresden

Contents

- A NA processes in lignite overburden dumps (Investigation steps, main results)
- B NA processes in ore mining heaps and tailings (Investigation steps, main results)
- C Main results in relation to a potentially reprocessing of mining dumps and tailings
- **D** Conclusions

Part A

Main results for ore mining heaps/ tailings

Th. Graupner (BGR Hannover), A. Kassahun (GFI Dresden), M. Furche (BGR Hannover), D. RammImair (BGR Hannover)

Crust formation by water infiltration/ mass transfer/ evaporation

Interplay of evaporation / chemical precipitation

Different kinds of crusts will be formed

 \Rightarrow Parts of the mining bodies sealed against flushing , mass transfer of trace metals is lowered

Types of crusts

Sulphidic Tailings (Freiberg)

Slag waste mining heap

Importance of reactive materials (Glasses, feldspars, micas, ...)

- \Rightarrow Different types of crusts
- ⇒ well-known Fe(OH)-rich hardpan layers
- \Rightarrow Also Gel-phase crusts

Relevant types of mining heaps

- \Rightarrow fine grained materials or glass-/ sediment mixtures
- \Rightarrow layer-like distributed reactive materials

Non-relevant types of mining heaps

 \Rightarrow Homogeneous grain-size and material distribution

Si- Gel rich crusts – process understanding

- \Rightarrow Gel formation by CO₂-influence, colloidal silica acid, polymerisation
- \Rightarrow Si-gel rich crusts leads to a shift in water retention behaviour
- ⇒ Gel formation self-enhancing process and enrichment with metals

0,1 4

0.1

0.2

0.3

0.4

volumetrischer Wassergehalt [-]

0.6

0.5

0.7

Hoth et al. NA-Processes – Workshop Geociencias y Energia – 18. - 21.1.12 Concepcion

Mag

WD

HFW Det 4/25/2005 0.27 mm LFD 3:55:32 PM

Geoelectrical tomography – column tests

Comparison of heap material (iron slag) with crust and without crust (in-situ sampled)

Continuously Sprinkling- / Drying- experiment:

Water front after "Sprinkling" infiltrated with crust much less

Evaporation and ongoing crust formation take place

14 _____

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Geophysical monitoring system

(DC3DTopo, T. Günther & C. Rücker)

 \Rightarrow Geophysical monitoring system was developed and proved (Geoelectrics and Spectral Induced Polarisation)

 \Rightarrow Showing the evidence of crusts is possible

Part B

Main results for lignite overburden dumps

(TUBAF, GFI, UFZ, GEOS, INC)

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

- \Rightarrow open cast AMD generation (acidity, iron, sulphate, trace metals)
- \Rightarrow network of hydrobiogeochemical reactions
- \Rightarrow microbial sequence of reduction reactions
- \Rightarrow "Engine" = dumped tertiary C_{org}

Geflecht von hydrobiogeochem. Reaktionen

- Carbonate buffer \Rightarrow DIC, Ca²⁺, Mg²⁺, Fe²⁺
- Cation exchange \Rightarrow Na⁺, K⁺, Ca²⁺, Mg²⁺

 \mathbf{P} \mathbf{Q} \mathbf{P} \mathbf{Q} \mathbf{P} \mathbf{Q} \mathbf{P} \mathbf{Q}

Al- u. Fe- hydroxide buffer \Rightarrow Al³⁺, Fe³⁺, trace metals

Alumosilicate-buffer \Rightarrow Al³⁺, H₂SiO₃, main Elements, trace metals

Geogenic buffer potentials \Rightarrow storage pool of secondary minerals Microbial redox sequence \Rightarrow transformation of tertiary C_{org}

aerobe respiration Nitrate reduction Manganese reduction **Iron reduction Sulphate reduction** Methane fermentation

 $\begin{array}{l} \mathsf{CH}_2\mathsf{O} + \mathsf{O}_2 \to \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O} \\\\ \mathsf{CH}_2\mathsf{O} + 0.5 \ \mathsf{NO}_3^- + \mathsf{H}^+ \to \mathsf{CO}_2 + 0.5 \ \mathsf{N}_2 + 0.5 \ \mathsf{H}_2\mathsf{O} \\\\ \mathsf{CH}_2\mathsf{O} + 2 \ \mathsf{MnO}_2(\mathsf{s}) + \mathsf{H}^+ \to \mathsf{CO}_2 + 2 \ \mathsf{Mn}^{2+} + 0.5 \ \mathsf{H}_2\mathsf{O} \\\\ \mathsf{CH}_2\mathsf{O} + 4 \ \mathsf{FeOOH}(\mathsf{s}) + 8 \ \mathsf{H}^+ \to \mathsf{CO}_2 + 7 \ \mathsf{H}_2\mathsf{O} + 4 \ \mathsf{Fe}^{2+} \\\\ \mathsf{CH}_2\mathsf{O} + 0.5 \ \mathsf{SO}_4^{-2-} + 0.5 \ \mathsf{H}^+ \to 0.5 \ \mathsf{HS}^- + \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O} \\\\ \mathsf{CH}_2\mathsf{O} \to 0.5 \ \mathsf{CH}_4^- + 0.5 \ \mathsf{CO}_2 \end{array}$

a co 2- att+

>NA-Indicators for lignite overburden dumps

Field-Investigations of elder dumps – ca. 60 years (TUBAF [2000])

RKS MF 0/3 (x=200, y=100)

RKS Esp 6

Hoth et al. NA-Processes – Workshop Geociencias y Energia – 18. - 21.1.12 Concepcion

19 _____

W TECHNISCHE

PEIBERU

NA-Indicators for lignite overburden dumps

Field-Investigations of elder dumps (TUBAF [2000], UFZ [1999])

- \Rightarrow Activatability of SRB (dump ground waters)
- ⇒ Sulphate isotopic values (dump ground waters)

Tests (ideal) with autochthonic biocenosis

⇒ Fe-/ Sulphate-reduction "sequential parallel", very fast (high rates)

 \Rightarrow sterile controls \Rightarrow Main part is microbial process

Hoth et al. NA-Processes – Workshop Geociencias y Energia – 18. - 21.1.12 Concepcion

TECHNISCHE UNIVERSITÄT

SEM – new formed sulphides

SEM-investigation by Gert Schmidt (TUBAF-IKGB)

UNIVERSITAT

 \Rightarrow Framboidale, partly amorphe structures (Greigit) \Rightarrow Variable Fe/S-ratios

>Tertiary C_{org} – Engine of the process sequence

- \Rightarrow Dumped "residual coal" (tert. C_{org}) *available by partly oxidation*
- \Rightarrow Cultivation of autochthonic fungies on site material
- \Rightarrow Liquification starts already after 5 days
- \Rightarrow up to 19 g/l DOC (humic substances high masses, aromaticity)

Dump ground waters show other behaviour

 \Rightarrow Sign for microbial transformation

 \Rightarrow Important for microbial process engineering

Fertiary C_{org} – Batchtest Plessa-Sediment (Fungi, hSRB)

"DOC-supply" by autochthonic biocenosis

⇒ High concentrations of dissolved organic substances, strong discolouring of the solution

Sulphate reduction - old dump Plessa

≻dump-GW Transekte I Influenced by lake-water > Margin structure

Investigation site

> Dumped before ca. 80 years

200 - 500

50

Hoth et al. NA-Processes – Workshop Geociencias y Energia – 18. - 21.1.12 Concepcion

700

Iron [mg/L]

Dump Plessa – sulphide evidence

>Evidence of sulphide at all water gauges

Sulphate reduction is also relevant by pH-values < 5 !</p>

Dump Plessa – sulphate reduction

Isotopic values of the dissolved Sulphates: δ^{18} O and δ^{34} S

> positive correlation between δ^{18} O- und δ^{34} S-values

Dump Plessa – sulphate reduction

Comparison of S-isotope signatures of co-existing reduced and oxidised anorganic sulphur within the sediment

Hoth et al. NA-Processes – Workshop Geociencias y Energia – 18. - 21.1.12 Concepcion

> Dump Plessa – autochthonic microorganisms

chthonic microorganisms

- **Molecular-genetic investigation**
- (Workinggroup Seifert/ Schlömann)
- ⇒Complete surprise high diversity
- ⇒Acidophilic sulphate reducers

⇒Fermenting bacteria

Spacious monitoring – messurement points (age)

Iron, sulphate content related to the age

Well correlated decrease

Sulphate isotopy related to the age

¹⁸O – typical sulphate reducing effect, ³⁴S – different sources

Calculation methodology for K_{B6,5}

As objective-pH value = 6,5 was chosen

In PHREEQC – water analysis in contact in air

 $Fe(OH)_{3(a)}$, $Al(OH)_{3(a)}$ can precipitate \Rightarrow acid generation

After that calculation of alkaline consumption by titration to reach pH=6,5

> Calculation potential acidity ($K_{B6,5}$) related to the age

Clear decrease of the values for elder dump sites!

>Model of reduction and microbial use of tertiäry Corg

Part C

Main results in relation to a potentially reprocessing of mining dumps and tailings

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

- \Rightarrow Understanding of the weathering zones
- \Rightarrow Therein great part of the metals dissolved
- \Rightarrow On the interface of oxidized and reduced zones accumulations
- \Rightarrow Knowledge of dumping technology, time space of work levels etc.

TECHNISCHE UNIVERSITÄT

Crusts in ore mining heaps/ tailings

Profil A (0,6 – 0,63 m)

>Ore mining heaps/ tailings – sequential extraction

A. Teilber eich von Profil A (0.60-0.63 m)

Steps of extraction:

- I Water soluble fraction Zn
- II Ionic exchangeable fraction Zn
- III Carbonatic fraction
- IV Easy reduceable fraction
- V Organic fraction
- VI Fe(III)-Oxihydroxid- fraction ±Jarosit As, Pb
- VII Crystalline Fe(III)-minerals (z.B. Jarosit) Pb
- VIII To oxidise fraction (Sulphides) Pb, Zn
- IX Residual fraction (silicates)

B. Freigesetzte Kontaminanten bei der Extraktion der Lagen aus Abb. A

TECHNISCHE

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Conclusions

Conclusions

 \Rightarrow Natural attenuation processes in mining dumps/ tailings are relevant in an long-term view

 \Rightarrow C_{org}-rich overburden dumps – sulphate reduction by autochthonic bacteria – high rates possible – enhancing technologies

 \Rightarrow Process engine – depolymerisation of TOC

 \Rightarrow Sulphate reduction also shown for pH-values < 5

 \Rightarrow Ore mining heaps and tailings – crust formation at capillary fringes – hydraulic encapsulation of heap parts

 \Rightarrow Importance of silica rich gel layers – metal enrichment

⇒ Understanding of the (hydro)geochemical reorganisation processes important for flushing prognosis

 \Rightarrow also very important if reprocessing of dumps/ heaps / tailings are in mind

Thank you for your attention

