

Isótopos de azufre y oxígeno como trazadores de interacciones entre la atmósfera, suelos, hidrósfera y el yacimiento de sulfuros de la región de Freiberg

"Schwefel- und Sauerstoffisotope als Tracer für Wechselwirkungen zwischen Atmo-, Pedo-, Hydrosphäre und der Sulfiderzlagerstätte in der Region Freiberg"

Dr. Frank Haubrich, ERZ&STEIN

Content

- 1. Overview of the region
- 2. History of mining in the Ore Mountains (Erzgebirge -Montes Metálicos) and consequences for soil contamination (Freiberg)
- 3. Old mining under the city of Freiberg oxidation processes of sulphide ores
- Quantification of heavy metal/As precipitation in the old mine of Freiberg by use of the stable isotopes of sulphur (δ³⁴S) and oxygen (δ¹⁸O).

5. Conclusions

1. Geological overview of the Ore mountains

2. History of 800-years mining at the Ore Mountains

2. History of 800-years mining at the Ore Mountains

2. Geology and ore lodes in the Freiberg district

Polymetallic sulfide deposit

More than 1000 ore lodes with:

Galenite (PbS with 0,1-0,3% Ag) Sphalerite (ZnS with Cd) Pyrite (FeS₂) Arsenopyrite (FeAsS) Chalcopyrite (CuFeS₂) native silver (Ag) div. Ag-ores (Argentite, Proustite, ...) Fluorite (CaF₂) Baryte (BaSO₄)

In Freiberg production of:

- Ag up to the 19th century
- Pb, Zn in the 20th century

Data source: Landesamt für Landwirtschaft, Umwelt und Geologie Sachsen

2. As in top soils

2. As in sub soils

2. Pb in top soils

2. Cd in top soils

2. Contamination sources of heavy metals/As

Problem: 800 years contamination of soils, water (sediments) with heavy metals and As by:

- 1. Natural ore lodes geogenic background
- 2. Anthropogenic influence
 - Old mining dumps
 - Tailings of old smelteries

 Backfilled and embedded low grade ores (in the closed mine)

3. Backfilled and embedded low grad ores in old mine lodes

Mean percentage element content of main ore lodes

3. Backfilled and embedded low grad ores in old mine lodes

Oxidation of sulfide ores in the old mine "Reiche Zeche" of Freiberg

3. Typical element content of Acid Mine Drainage in Freiberg

Our questions!

- How many tons of heavy metals/As from the oxidized sulphides were mobilised in the old mine ?
- What percentage of these heavy metals/As are sedimented as secondary minerals in the mine ?
- What percentage of these heavy metals/As are flushed out through the mine drainage gallery ?

Solution:

 Determination of ³⁴S and ¹⁸O-Signatures of sulphides and sulphates in the environment and the mean percentage element content of main ore lodes

4. Follow up stable isotope of ³⁴S and ¹⁸O of Sulphate from:

Cross section through the mine area of "Schwarzer Hirsch Stehender" of the Freiberg polymetallic sulfide ore deposit and mine drainage gallery "Rothschönberger Stolln"

4. Isotopic composition of atmospheric sulphur components

Sampling point at the "Institute of Mineralogie" TU Bergakademie Freiberg

4. Isotopic composition of atmospheric sulphate deposition

Sampling point at the "Institute of Mineralogie" TU Bergakademie Freiberg

4. Isotopic composition of soils, ground- and seepage water

Sampling points near the shaft "Reiche Zeche" Freiberg

4. Isotopic composition of sulphate of mine water

Sampling points ore lode "Schwarzer Hirsch Stehender", Reiche Zeche

4. Isotopic composition of the Acid Mine Drainage - sulphates

Sampling points ore lode "Schwarzer Hirsch Stehender", Reiche Zeche

4. Sources of SO₄: atmospheric and from oxidized sulphides

4. Sulphate mixing line: atmospheric and from oxidized sulphides

atmospheric sulphate (deposition)
= 5,5 % (± 0,6 %)
Initial value of the AMD-sulphates
= -1,9 % (± 0,9 %)
Mixing of both sulphates in the mine waters / drainage galleries

Initial value of the

Mixing line of Atmospheric deposition and AMD-sulphates

= mine water

4. Isotopic composition of sulphate of mine drainage gallery

Sampling point of the opening hole "Rothschönberger Stolln"

4. Calculation of minimum quantity of oxidized sulfide ores

Rothschönberge "Reiche Zeche" (

Rothschönberger Stolln
Opening hole

Pb	Cu	Zn	Cd	As	Fe	Σ	S
8,5	0,8	14,3	0,1	2,2	31,9	57,8	42,2

Original main ore lodes (Proportions [%]) [%]

Q	Pb	Cu	Zn	Cd	As	Fe	S		
[l/s]	[t/y]								
600	129	13	219	2,2	34	489	1944		

Annually load of elements which is potentially flushed out through the mine drainage gallery

	Q	Pb	Cu	Zn	Cd	As	Fe	S		
1 to 1	[l/s]				[t/y]					
	600	0,8	1,1	105	0,6	0,3	16,4	6270		
	Annually load of elements which is really flushed									
out through the mine drainage gallery (include soluble and										
Stolln near the shaft Suspended matter)							atter)			

4. Calculation of minimum quantity of oxidized sulfide ores

		Fe-H	Hydroxide sin	ter deposit (Photo: Kluge	
Sinter deposit (Photo: Kluge)	Pb [%]	Cu [%]	Zn [%]	Cd [%]	As [%]	Fe [%]
Flushed out (soluble+suspended matter)	0,6	8,9	ca. 50	ca. 70	0,8	3,4
Sedimented in the mine (sec. minerals)	99,4	91,1	ca. 50	ca. 30	99,2	96,6

Proportions between the really flushed out metal loads and the quantity of sedimented metals in the mine [%]

5. Conclusions

- **1.** Two sources of sulphates for the Freiberg site were shown
 - atmospheric sulphate
 - sulphate from oxidized sulphide ores

Sulphates of mine waters are a mixing of both sources

- Oxidation of low grade sulphide ores leads to formation of secondary minerals and high concentrated Acid Mine Drainage (AMD) - waters
- **3.** Increasing of pH of AMD precipitate Fe- and Al-Hydroxides with adsorption of high quantities of Pb, As, Zn, Cd
- 4. The formation of secondary minerals and the adsorption of heavy metals on hydroxides (point 2 and 3) is a "natural attenuation process" of the environment

UND ROHSTOFFBERATUNG BR BUSCHMANN - TRINKLER - HAUBRICH

Gracias por atención Thanks for attention Vielen Dank

